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THE GEOMETRY OF MATRICES
By H. W. TURNBULL, F.R.S.

(Recetved 4 July 1941)

In §§ 1-3 the matrix notation and theory of the stratified locus V% are developed, and two
reflexive processes are defined. §§ 46 deal with rank and duality. In §§ 7-9 a matrix pencil
is interpreted by means of Grace’s collineation defined by four [k —1]’s in [2k—1]. In § 10
constructions are given. §§ 11-13 interpret a non-singular matrix pencil in terms of reflexive
operations; § 14 in terms of certain polar operations and nests of spaces. In § 15 these lead to
rational normal loci and their osculating systems. §§ 16-19 interpret the minimal indices
of a singular pencil in terms of reflexive processes. The minimal vectors are discussed in § 20,
and latent loci in § 21, while § 22 reports shortly on the associated invariant theory.

A A

InTRODUCTION

The following investigation gives a geometrical interpretation of classical matrix
theory by a systematic recourse to higher dimensions. It is shown that all the chief
features of a single matrix of order £ x £, or of a matrix pencil—the rank, the latent
roots, the exponents of the elementary divisors and the two kinds of minimal indices in
the case of a singular pencil—can be explained very naturally by a figure in [2k—1]
space. This figure consists of four linear spaces 4, B, Cand D. Each of 4, B, Cisa [k—1]
having no point in common with another, while D is an unrestricted space of the same
or of lower dimensions.

It is well known that three such spaces 4, B, C which have no point in common are
met by co#~! straight lines, each line passing through one point a, 4, ¢ in each space.
These lines in their aggregate form a scroll (to use Room’s word for such a locus). It is
a locus Z of k£ dimensions and of order £, a V% let us say. The manner in which an
arbitrary space [k’ —1], where &' <k, meets, or fails to meet, this Z is quite complicated,
but it gives a precise analogy to the behaviour of a matrix or matrix pencil. In par-
ticular, latent roots of the characteristic equation of a matrix are connected with the
cross-ratios of four collinear points on 4, B, C, D: and the fact that spaces D exist
which fail to meet the scroll Z corresponds to the existence of certain singular matrix
pencils.

The elementary divisors were first established by Sylvester (1850-54), and their
properties were first fully demonstrated by Weierstrass (1868). The theory of the sin-
gular pencil, with its minimal indices of two kinds is due to Kronecker (1874). Segre
gave various geometrical accounts of the theory of Weierstrass (Segre 18844, 1887 and
further references) and of Kronecker (Segre 1884 b,¢), but in the latter case confined
his treatment to that of pencils of general cones whose matrices are necessarily sym-
metrical and therefore yield identical pairs of minimal indices. I am not aware that
the more general and unsymmetrical case has ever before been discussed geometrically
in its entirety.
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234 H. W. TURNBULL ON THE GEOMETRY OF MATRICES

The geometrical treatment that follows is closely akin to that of Predella (1889—92),
who brought out the importance of a set of spaces conjugate to those which characterize
the elementary divisors. An account of this and indeed of the whole geometrical theory
of the homography or collineation is given in the Geometria Proiettiva degli Iperspazi by
Bertini (1923). I am grateful to Mr W. L. Edge for bringing to my notice several of the
geometrical references.

In what follows I work systematically with a matrical analytical geometry, a medium
which seems to be the natural link between the algebra and the geometry. I have
introduced a word ‘medial’ for the important self-dual space midway between a point
and a prime in space of odd dimensions, and have found it most convenient in practice.
I have also used the word ‘reflexion’ rather than ‘projection’ for the two processes
denoted by — and -, since they are generally employed alternately, and also because
the double-headed arrow process is usually not a one-to-one correspondence.

MEDIAL SPACES

1. In odd dimensional space [2k—1] linear spaces [£—1] occupy a central position,
that of being self-dual. For this reason it is desirable to give them a special name, and
I propose to call them medial spaces or briefly medials. Thus a point is a medial on a
line, a line is a medial in a plane, and a plane in [5], and so on.

Two medials 4 and C, which have no point in common, form a basis, in the sense
that every point of space [2k— 1] either belongs to 4 or C, or else is in line with a point
aof Aand ¢ of C. In fact the k-fold space containing 4 and any external point d intersects
the (k—1)-fold C in one point ¢: and the straight line ¢d, lying in the space 4¢, must
meet 4 in a point a.

Analytically let {0, 4} = {00, Koy oo s Xy Y15 Yo s Y} (1)

be the homogeneous co-ordinates of a point of [2k — 1], referred to the medials 4 and C
as basis: that is to say, let any point of 4 be given by {, 0}, and any point of C by {0, y}.
Here x is to be regarded as a column vector of £ components, as also y, while {x, y}
denotes a column vector of all 2k components in the above order. We shall call {x, }
the matrical co-ordinates of the point referred to the basis 4, C.

This basis is one of ,,C, ways of dividing the simplex of reference into two equal sets
of £ points. In what follows, the matrix notation will be systematically used.

By the matrical equation x = 0 is understood that all x; vanish: hence it represents the
medial C. Likewise y = 0 is the matrical equation of the medial 4. If x50, y0 the
point {x,y}, or d, is external to both 4 and C. Manifestly the three points

{x,0}, {%y}, {0y} (2)

are collinear, a, d and ¢ let us say: also a and ¢ are the only points of 4 and C which are
in line with this external point d. We shall call ¢ and ¢ the reflexions of this & in the
basic medials 4 and C, and shall denote the relation by a double arrow, thus:

a»d->c or a-—c. (3)
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H. W. TURNBULL ON THE GEOMETRY OF MATRICES 235

Any other point on the line ac is given by {px, oy}, where p and ¢ are scalar factors.
Suppose now that the point {x, y} lie on a third medial B. We can define B by £ inde-
pendent points 4, b,, ..., b, or by their matrix

B = [by,by, ..., ;] : I:g;:l = {Bth}’ (4)

where B has £ columns b; and 2k rows, while B, and B, denote the square arrays of
the first £ and last &£ rows. In this notation 4 would be {7, 0} and C, {0, I}, where I is
the unit matrix of order £.

If 6 is any column vector of £ elements, it may post-multiply the matrix B, and the

result
B0 or {B,0,B,0} (5)

is the parametric form of the co-ordinates of any point on this medial. It is useful
to write

loc{B,0, B, 0} (6)
to denote B as the locus of the point when the parameter § varies over its range of
values. The same notation is also useful when the parameter enters to higher degree
and the locus is curved.

If both B, and B, are non-singular, no solution of B, = 0 or B,f = 0 exists, except
¢ = 0. Hence no point of B is common to 4 or C. That is, B is skew to both. On solving
x = B,0 we then have § = Bylx, which is equivalent to a change of simplex within the
medial 4. If also we write y = B,0, 0 = B;'y we can express the co-ordinates of the
collinear points g, b, ¢, belonging respectively to 4, B, C, by the vectors

{03 0}’ {0’ 0}’ {0’ 0}’ (7)
where 0 = {0,,0,, ...,0,}.
The matrical equation ox = py (8)

will be that of the locus # which consists of all points in the variable straight line abc,
given by (7), for all values of the parametrical vector . In full this equation yields

the system
R ) o)
Y Y2 Y O
which is evidently the locus of the point {pf, 0} for all values of the ratio p: ¢ and of 4.
Thus we can write
R: loc{pb, a0}. (10)
This locus is a seroll, in the sense that it is generated by the co! linear spaces each of
which is given by a value of p: 0. These spaces are determined by £ independent equa-
tions ox; = py; of (9), and are therefore medials. They are often called generators; but
they stratify the figure, so to speak, and will here be referred to as the strata of %. They
include 4, B and C in particular. Each point of Z lies in one stratum (as the linearity
of (10) implies), and no two strata have a common point. Any three such strata deter-
mine the scroll.
29-2
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236 H. W. TURNBULL ON THE GEOMETRY OF MATRICES

Simultaneously the scroll is generated by the co*~! straight lines, each of which is
given by (10) with a fixed § and a varying p:o. These lines, which are often called
directrices, will here be called the generating lines of #. From (10) it follows that each
point of Z lies on one generating line, and that no two such lines have a common point.

The line joining two distinct points {x, y} and {x’, 5’} of Z must either lie in a stratum
or coincide with a generating line, or meet # nowhere else. This follows from (10) by
finding the condition for the point {vx+v'x", vy+v'y’} to lie on Z.

Any point of Z is specified by the generating line g and the stratum .S which meet at
the point. We may speak of the totality of strata as the stratification, and that of the
generating lines as the regulus of . When k = 2 the scroll is a quadric surface @,
x1Yy = %,4;, for which the stratification is a second regulus; but this symmetry is lost in
higher dimensions. In [5] the strata are planes and the regulus consists of c0? straight
lines. Also the locus # is now (k>2) the complete intersection of all the quadrics
Qij> %;y; = x;y;. Each of these is a quadric primal cone of rank four and signature zero
(in the real case), as four effective co-ordinates are involved. Any £—1 linearly in-
dependent among the 34(k— 1) cones @;; will determine the scroll.

The strata relate the points of any two generating lines in a (1, 1) correspondence,
and conversely these lines relate the points of any two strata in the same way. Any four
strata meet each generating line in four points having the same cross-ratio. Inparticular,
one of the six cross-ratios for the four strata

{x,0}, {x,Ax}, {0,x}, {x,ux} (11)
is Afu.
By the line x is meant the generating line which passes through these points.

CHANGE OF BASIS

2. More generallylet 4 = {4,, 4,}, B = {B,, B,}, C = {C}, C,} be three medials where
each of these six matrix components is of order £ x £. Each matrix 4, B, C will then be
of rank £. Let x, y, z denote any three points in them respectively. Then the matrical
co-ordinates of these points will be Ax, By, Cz asin §1 (5). Furthermore, the equation

Ax+By+Cz = 0, (1)

will hold if and only if these three points are collinear, as is apparent when this is written
out in full. Alternatively, we may write two equations

Ax+By+Cz=0, A,x+B,y+Cyz=0, (2)

involving six £ x £ matrices and three column vectors each of £ components, instead of
one with three 2k x £ matrices and the same vectors.

For example: The matrical equation
a, ay l:’ﬁ:l by b1 yl] ¢y € [Zl
ay ay | Ly d+] by by |Lysl+] ey 63| L2y ] =0, (3)
as as by by C3 C3
a, a, b, b} ¢y Cy
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H. W. TURNBULL ON THE GEOMETRY OF MATRICES 237

specifies that three points x, y, z, which lie respectively on three lines through pairs of
points a,a’ and b,5" and ¢, ¢’ of [3] space, are collinear. The four elements g; are the
co-ordinates of the point a referred to any tetrahedron of reference for [3], while x,
and x, are the binary co-ordinates of a point on the line aa’ referred to a and 4’ as base
points of reference.

From two such equations (2) we may eliminate either x or y or z very readily. For
assuming C; and C, to be non-singular we have

Ci'4,x+C7'Byy = —z = C3'4,x+C3'B,y:
whence Ly = Mx, (4)
where L=C{'B,—C3'B,y, M= C;'4,—Ci14,. (5)

Equation (4), which involves certain £ x £ matrices L and M explicitly, gives the
collineation between points of 4 and points of B determined by the transversal lines of
the medials 4, B, C. When 4, B, C are mutually skew these lines generate the scroll Z.
If L is non-singular we have y = Qx, where Q@ = L~'M; and similarly z = Ry, say, by
eliminating y from (1). The points on 4, B, C of a generating line of the scroll are given
by Ax, BQx, CRx. In fact the scroll is now

loc {pAx, sCRx}, (6)

with p:o and x as parameters of stratum and generating line respectively. This reverts
to the previous form § 1 (10) when 4 = {I, 0}, CR = {0, I}.

The parametric form of the scroll, referred to the basis 4 = {I,0}, C = {0,1} and
containing {B}, B,} as another stratum, is therefore

loc {pB, x, 0B,x}, (7)

and the points {B,x, 0} of 4, {0, B,x} of C are in line with {B,x, B,x}, that is with Bx
of B. Such points @ and ¢ will be called reflexions of 4 through B on to 4 and C, and will
be denoted by an arrow relation

a—b-—>c or briefly a-—c. (8)

I't is important to notice that both of the £-rowed determinants | B, | and | B, | are non-
“zero—otherwise B meets either 4 or C. This being so the relation of a to ¢ is symmetrical
and one-to-one, and we can also write c—b—a, c— a.

Now let D = {D,, D,} be a 2k x k matrix of rank r where 0 <r<(k. It represents an
[r—1] which is either a medial (r = £) or else a lower space. Let it be called a punctual
space, in contrast to linear spaces [r' — 1] where 2k — 1 >#' >k which are primary* spaces;
so that a medial is in both categories.

Any point of D is given by {D,#, D,x}, or Dx, and is in line with {D, x, 0} of 4 and
{0, Dy} of C. Since D is of rank equal or less than £ it is possible for D to meet 4 or C
or both. Whenever a, d, ¢ are points of 4, D and C which are both collinear and distinct,
we shall call @ and ¢ reflexions of d through D on to 4 and C, and shall express this by a
double arrow,

a-»d-»c, or briefly a->c. (9)

* The word primal has already become attached te n-dimensional loci of any order in [n+1].
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238 H. W. TURNBULL ON THE GEOMETRY OF MATRICES

This relation is no longer necessarily symmetrical, and, as we shall see, will lead by its
lack of symmetry to the minimal indices in the case of a singular matrix pencil. We note
that, for a given point a of 4, there may be an infinity of points & of D, distinct from a,
for which ad meets C. When all such points of D in line with @ and a point of C are taken,
together with all the points which are common to D and C, let the resulting locus in C
be called C,. We shall express this by

a-»D-C, orbriefly a—=C,. (10)

If both ¢ and ¢’ belong to C, so must the line ¢c’. Consequently C, is a linear subspace
of C. This C, is called the reflexion of a through D to C.

Similarly ¢ D -» A, gives the reflexion 4, of ¢ to 4.

When all possible positions of ¢ within 4 are taken which are either in D or else in
line with some point of D and some point of C, the three points being distinct, the result
is again a subspace 4,, of 4. This is called the total reflexion of D on to A. Similarly for C),
the total reflexion of D on to C.

Finally, when a describes a locus or region ¢ of 4, the aggregate of distinct points of
all the C, will form a region Cj of C, and we shall call this the reflexion of ¢ through D

to C, namely,
When no such region Cy exists the result is written

¢+ D 0. (12)

For the general position of the [r—1] space D, the dimensions of these reflexions
C,, Cy, Cp are quite complicated. But when D is a medial, such as B, which is skew to
both 4 and C the reflexions are related in (1,1) correspondence. For example, 4, is
then identical with 4.

THE MATRIX PENCIL

3. The usual theory of a single & x £ matrix, or a pair of such, or again a pencil of
such, is comprised in the study of the pencil p.D, + ¢.D,. This pencil will be represented
geometrically by the locus of the point

{D,0, D,0}, 0=1{0,,0,,...,0,}, (1)

which is the space D referred to the basis 4 = {/, 0} and C = {0, I}. Now any other two
of the strata of Z are given by A = 14 +A'Cand C = ud + 4'C, where the four coefficients
are scalar and such that Au'#A'u (otherwise the strata coincide). Also if {£, 7} are the
matrical co-ordinates of a point {x, y} referred to 4, C as basis of reference, we shall have

the relation Ax -+ Cy == A+ Cy, that is
x =M+, y=2NE+u, (2)

for £, 7 in terms of the original co-ordinates. Hence D will now be partitioned into
{AD,+uDy, X'D,+u'Dy} = {D,, D,}, and the pencil will become pD, +7D,, where

{& 1y ={D0,D,0} and p=2Ap+A'T, o=pp+u7. (3)
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H. W. TURNBULL ON THE GEOMETRY OF MATRICES 239

But this, which also occurs in the algebraic theory of a matrix pencil, is there called a
change of basis of the pencil. Hence we have proved the following result:

THEOREM 1. 4 k X k matrix pencil, whether singular or non-singular, can be represented by a
linear space of dimension less than k, with reference to a scroll X and with two of its strata for basts.
Algebraic change of basts for the pencil corresponds to change of reference to two other strata.

RANK OF A MATRIX

4. When a matrix 4 consisting of m rows and n columns has a rank 7, there are
exactly n—r linearly independent non-zero solutions for the ratios of x;, x,, ..., x, in
the system of linear equations given by

Ax = 0. (1)
This well-known theorem has a useful corollary, as follows. Replace 4 by the matrix
[4, B],

wherein 4 has 7, and B has 7, columns, and both have m rows. Also let the ranks of the
parts be n; and 7, respectively, while that of the whole is 7, so that

r=n,, YZ=n,, NytRy=T.

Let {x, y} be a column vector of #, components x; and 7, components y;. The expression
(4, B]{x,y} = 0, or ’
Ax+By =0

will evidently represent a system of m linear homogeneous equations in the x; and y;:
and it will have n, +n,—r non-zero linearly independent solutions. In each such solu-
tion both x and y are non-zero: else, if y = 0, x50 then Ax = 0, where 4 is of rank n,;
that is, all x would vanish, which is a contradiction. Similarly for any number of such
partitions of a matrix by columns.

Using this principle for the case when n; = n, = etc. = p, we may develop the ideas
of § 2. For consider the matrical equations

Ax =0, ¢q=1,
Ax+By =0, ¢q=2,

2
Ax+By+Cz = 0, q=3,J (2)

where each of 4, B, C, ... has p columns and rank p, while each of x, y, z, ... is a column
of p elements. Let each of 4, B, C, etc., in the gth equation have pg rows, for each
successive value of ¢. Since the rank of each matrix is p, the first equation has only the
solution x = 0, while all the rest have non-zero solutions. The first equation is a con-
verse way of stating that there is no point of 4 external to 4; the second states that the
point x of 4 coincides with y of B; the third that x of 4, y of B and z of C are collinear;
and so on. :

In the second equation 4 and B are medials in odd space [2p—1]; in the third 4, B, C
are trimedials or [p—1]-folds in [3p—1]. Thus Ax = {4,x, A,x, A;x} are the matrical
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240  H. W. TURNBULL ON THE GEOMETRY OF MATRICES

co-ordinates of a point of 4, where each 4, is a p x p matrix. This third equation implies
three submatrical equations
Ax+By+Cz=0 (1=1,2,3),
from which any two of #, y, z can be eliminated. Systematic elimination of z yields,
say, Ly = Mx, Ly = M, x, so that (LM —L7'M,) x = 0. But x0: hence the p-rowed
determinant
|LM—LiM, |

must vanish. This determinant is naturally a condensation of the 3p-rowed deter-
minant | 4,B,C;|. This means that, when x 70, the rank of the matrix [4, B, (] is
less than 3p. By the above corollary on rank, neither y nor z can vanish when x+40.
Hence three [p—1]’s in [3p—1] but not in [3p—2] have no transversal line, but if
they lie in [3p—2] but not in [3p—3] they have one such line—answering to the
unique solution for x:y:z.

This method of elimination is virtually that of A. R. Richardson (1928) and applies
to any number of such right- (or left-) handed matrical linear equations. Also the
corollary to the theorem on rank affords a ready means of representing the double sets
of spaces, which generalize on the double-six of lines, and which have been established

by T. G. Room (1929).
In the third equation (2) the rank of [4, B, C] may be 3p or less, but not less than p,
that of 4 or B or C. By taking the rank successively equal to p, p—1, p—2, ... we infer

that
three [p—1]’s in [3p—1] but not in [3p—2] have no transversal line,

three [p—1]’s in [3p—2] but not in [3p— 3] have one transversal line,
three [p—1]’s in [3p— 3] but not in [3p—4] have co! transversal lines,
three [p—1]’s in [3p —4] but not in [3p— 5] have co? transversal lines,
etc.
From Ax+ By -+ Cz+ Dt = 0, we infer that a plane xyzt traverses 4, B, C, D and meets
each in one point. Here ¢ = 4, and p<r<<4p. Hence
four [p—1]’s in [4p—1] but not in [4p —2] have no transversal plane,
four [p—1]’s in [4p—2] but not in [4p— 3] have one transversal plane,
etc.

In general from the gth equation we infer that

q [p—1]’s in [ pg—1] but not in [ pg—2] have no transversal [¢—2],

qg[p—1]s1in [pq——?] but not in [ pg— 3] have one transversal [¢—2],

q [p—17’s in [ pg— 3] but not in [ pg—4] have oo! transversal [¢—2]’s,
etc.

The second result in each of these hierarchies leads to a double g+1, namely, a
double g+1 of [p—1]’s and [¢—2]’s in [ pg—2]. For example, (p =2, ¢ = 3) a double
set of four lines a, b, ¢, d and a’, b, ¢/, d’ in [4] but not in [3], where d’ is the single
transversal of a, 4, ¢, and so on.
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The third result in each hierarchy leads, when p = 2, to the scroll #, with k = ¢—1.
Here g lines in [2¢— 3] but not in [2¢—4] have oo! transversal [¢—2]’s, which are the
strata. These ¢ lines are £+ 1 of the generating lines, which are just the requisite number
to determine the collineation, set up by all the generators, between any two fixed
medial strata.

The (k+1)th result when p = £, ¢ = 3 also gives # in the alternative form:

three [£—1]’s in [2k —1] but not in [2£—2] have co*~! transversal lines.

DUAL PROPERTIES

5. Answering to the point {x, y} is the prime [«, v] where

[uav]E[ulau2>-“auk> V15 Vs -°°’vk] (1)
are the 2k co-ordinates dual to those of a point. The point lies on the prime if
that is if ux—+vy = 0. (2)

Manifestly the row vector [0, v] gives the prime co-ordinates of the medial 4, since this
prime contains the point {x, 0} for all values of v and x. For like reasons the prime
co-ordinates of the medials B and C are [u, —u] and [, 0], corresponding to their point
co-ordinates {x, x} and {0, x} respectively.

Again, if the prime [u,v] contains the stratum loc{px,ox} (p:0constant), then
[, v] {px, ox} = O for all values of x, so that pu+-ov must vanish. Hence the expression

[ou, — pu] ' (3)

gives the prime co-ordinates of the same stratum p:o of Z: so that the tangential (or

prime) equations of Z are

Uy Uy Uy, o

i N 4

Uy Yy Uk P’ )
which reproduce the form of the point equations (§1(9)). Just as a point which lies
on any stratum belongs to %, so we say that a prime which contains any stratum belongs
to #. It is readily seen that such a prime contains one and one stratum only of Z.
And just as Z is the locus of the point {px, ox} for varying parameters p:¢ and x, so

also it is the envelope of the prime [ou, — pu] for varying p:o and u; let us say,
env [ou, —pu]. . (5)

For a fixed ratio p:o we obtain the same stratum from either locus or envelope; but
with a fixed  and varying ratio we obtain a generating secundum G, that is, a [2k— 3]
which meets each stratum in a [£—2]. This is the dual of the generating line g which
meets each stratum in a point. -

For example, when k£ = 3, the medials are planes in [5]. The strata of Z are planes,
the g generators are lines which meet each stratum in a point, while the G generators
are [3]’s which meet each stratum in a line.

Vor. 239. A 8os 30
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A point {D, ¢, D,¢} of a given punctual space D will lie on £, that is on loc {px, ox},

if AD, ¢ = px, AD,¢ = ox for some value of A. Hence

(0D, —pDy) =0 ($#0). (6)
This can only happen if the determinant | 0D, —pD, | vanishes. When D is a medial
which meets neither 4 nor C, this determinant gives a binary £—ic in p: o with at most
kroots. In general a medial therefore meets Z in £ separate points situated upon separate
strata and separate generating lines. Hence the locus Z is of order k. It is also of &
dimensions, since it is the locus of co! [f—1]’s; so that it is classified as a V.

But it is also of class k, that is, a given medial in general position lies in exactly &
primes which belong to #Z. For, instead of taking a 2k x £ matrix, we may take its
transposed k x 2k type

A =[4,,4,] (7)
with a pair of £ x k components 4, and 4,. If 4 is of rank £ its £ rows define £ linearly
independent primes and therefore a medial 4 common to all. This medial is

env [wd}, 04,], (8)

where 0 = [0, ..., 0,] is a set of parameters. Also the prime [w4,, w4,] belongs to Z# if
it is identical with the prime [ou, —pu]: that is if

olpdy+0) =0 (07£0). (9)

Hence | p4,+ 04, | = 0, which in general has just £ solutions for p:¢. Hence the scroll
Z is of class k.

Allowing for all possible ranks 7, where 0 <7<k, the matrix 4 represents a primary
space, that is, a medial or else a higher dimensional space. If7 = 1 it represents a prime.
Thus the pencil of £ x £ matrices D = AD,+uD, answers to the punctual, and its trans-
posed form A = A4+ ud, to the primary, space. The scroll #Z and the basic medials
A, C are the same for each.

SUBORDINATE DUALITY

6. It will be seen that the duality of points and primes in [2k—1] induces a duality
also within the space [k—1] of each medial. Thus an arbitrary prime ¢ whose co-
ordinates are [«, v] meets the medial 4 in a [k— 2] given by [u, 0], and meets C'in another
[£—2] given by [0,v]. Within A this [u, 0] is a prime of A, whose co-ordinates are u (a
vector of £ elements). Likewise v is a prime within C.

Just as a is used for a point of 4, so «, f, etc., will denote primes [2k — 2] containing
4, B, etc., respectively. Corresponding to the usual notation for 4, B, C as strata of #
we shall have the co-ordinates

[0,u], [u, —u], [u0], (1)
for three such primes a, £, y respectively which are coaxal, and therefore have a secundum
G in common. Also this G which is a generating secundum of # meets each of 4, B, C
in a prime (within the medial) of parameter . We may exhibit this feature by the

reflexive arrow notation
«—>f->y or briefly a-—y. (2)
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Also if, as above, 4 is any primary space contained by the prime J, whose matrices
4,, 4, are the transposed form of D,, D,, we can write
[0,04,], [wdy,0d,], [wd,,0], (3)
for three primes «, d, y which are coaxal; and also
a->0->7y or briefly a7y, (4)

where the double arrow has specific reference to this matrix 4.

The single arrow will always refer to reflexion through B, while the double arrow
always refers to D or 4. The former is a (1, 1) correspondence: the latter is not
necessarily so.

(GRACE’S COLLINEATION DEFINED BY FOUR MEDIALS

7. Take four medials 4, B, C, D of [2k—1] which are skew to one another. Let
a, @', b, ¢, d be five points of them such that abc are in line, as also a’cd. That is

a>b—->c»>d»a'. (1)

This sets up a (1,1) correspondence between ¢ and a’, as both vafy throughout their
[k—1] space 4, for which there will be in general k latent points a, of A4, where a and a’
coincide, and the broken line abcd becomes the straight a, )¢, d,.

Ficure 1

Hence there are exactly £ line transversals of four medials in general, which will
meet D in the £ points d,, in fact where the scroll Z, defined by 4, B, C, meets D. This
gives an alternative proof that Z is of order £.

Again the cross-ratios (a,0,¢,d,) on these k£ transversal lines must evidently be
projective invariants of the four medials.

These ideas and results were given by Mr J. H. Grace (1929) in the course of his
important account of ‘Double Figures and Rational Normal Curves’.

If the co-ordinate vectors of a, @', b, ¢, d are x, £, y, z, ¢ respectively, the analytical form
of the collineation is obtained by eliminating y, z and ¢ from the conditions of col-
linearity,

Ax+By+Cz =0, Af+Cz+Dt=0. (2)
With the canonical forms (7,0), (1,1), (0,I) for three skew medials 4, B, C and the
general form (D,, D,) for D, we at once obtain

{x,0}—={x, x} > {0, x} > {D, 0, D, 6} - {D, 8, 0}, (3)

where necessarily px = D,0, in order to make the point ¢ the same, whether obtained
from ab or from a’d. The scalar factor p, which must be non-zero, can then be merged in
the homogeneous co-ordinates x; of x.

30-2
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This gives Grace’s collineation between x and £ in the form
x=D,0, &=D0, ‘9:[01362:-~-3‘9k]7 (4)

in terms of the parameter §. Incidentally this form is applicable for all such linear loc’
D, whether medial or of lower dimensions, and whether skew or otherwise. If, however,

D is skew to A4, then the matrix
_[1 D,
[4,0] =] " !

must be of full rank 2£, so that its determinant | D, | is non-zero and D, is non-singular.
Also 0 can then be eliminated, and we have the explicit form

£ — D,Dy'x — Hx, H=D,Dj (5)
4

Furthermore, by a change of the frame of reference within D we may absorb D, in the
co-ordinate system and take {D, x, x} for the typical point of D. The collineation within
4 is now given by { = D, x. Conversely, any collineation between two points ¢ and a’
of 4 is capable of the form (4), to which a definite space D belongs. This proves the
following theorem:

THEOREM 2. Any point-to-point collineation within a space [n] can be constructed by Grace’s
method of transversals across any two further spaces [n] and a suitably chosen fourth space of the
same or lower dimensions, all four spaces being skew to each other but situated in [2n+1].

Again if D is skew to C, D, must be non-singular and

x=D2Dl_l§:K§) K=‘D2Di-ls (6)

and, if D is skew to both 4 and C, then K = H~1.
Again, if x is a latent point then ux = Hx, where x4 is a latent root of H; and the
collinear range of points, on 4, B, C, D respectively, is now

{x,0}, {x,x}, {0,x}, {wx, x}.
But these four points have a cross-ratio #, and this applies to each such range. Since
any non-zero scalar multiple pH of the matrix gives the same collineation of x and §
in homogeneous co-ordinates, the cross-ratio for each different transversal will be
equal to pu, where u is the corresponding latent root. This proves the following theorem:

THEOREM 3. Each transversal line of the spaces A, B, C, D meets A at a latent point of the
collineation; and one of the six cross-ratios of the four points of intersection of the transversal line
with A, B, C, D 1is proportional to the corresponding latent root.

CoRrROLLARY. The same collineation can be interpreted as a one-to-one relation between the
generating lines x, & of the scroll A. The latent lines are those which meet the space D, and their
cross-ratios are the corresponding latent ratios (i.e. ratios of latent roots).

This corollary seems to provide the closest geometrical interpretation for the alge-
braic theory of a matrix pencil.

GROUP OF COLLINEATIONS DERIVED FROM FOUR MEDIALS

8. When 4, B, C, D are four medials in general position, that is, skew to one another,
both H and H~! exist, and no latent root can vanish. There are clearly 24 collineations
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obtainable by permuting the order of the four medials. Let (1234) denote the above
case of a collineation from a to @’ in 4, hinging on C, and having a matrix H. Reference
to the figure shows that (1432) would also hinge on C but would reverse the order, @’
passing to ¢ with a matrix H-1.

Of the six permutations (14k) three move a to a new point in 4, and three bring a
new point back to a. It is straightforward to verify that the results are as follows:

collineation matrix latent root
(1234) a tod H U
(1432) d' toa H1 ut
(1324) a toad” I-H 1—u
(1423) a" toa (I—H)™! (1—p)~!
(1243) a toad” H|(H-1I) ul(p—1)
(1342) d”" toa I—-H! 1—p! (1)

For example, in (1324) the collinearity conditions are
Ax+By+Cz =0, AE+By+Dt=0, (2)

which yield {x, 0}, {x, x}, {0, x}, {H0, 0}, {¢, 0} for the five points a, b, ¢, d, a”. For bda"
tobeinline, take x = f and { = (I— H) x on using (2), which agrees with the above table.
Each matrix is a scalar function of H, and thus provides a simple instance of Sylvester’s
theorem, that the latent root of f(H) is f(#) when that of H is . Of course u takes each
of the £ or less values belonging to H in each of the above collineations.
Each of the six modes of the matrix gives rise to four collineations, one upon each
medial. For example, the matrix A belongs to the set

(1234), (2143), (3412), (4321).

All 24 collineations have the same set of transversals to determine their latent points
and roots. The symbol (ij/) for a collineation has been chosen to agree with that of the
cross-ratio of any four collinear latent points, one on each medial.

The actual number of transversals depends on the character of H, and therefore on
the position of D with reference to the medials 4, B and C and their associated scroll Z.

DUAL FORM OF THE COLLINEATION

9. Ifwithin A4 the point x lie on the [k —2] space , that is, a prime of 4, then ux = 0.
If also the point § lie on a prime v then v = 0. Hence (¢D,—vD,) 6 = 0, so that the
collineation

x=D,0, £=D,0, (1)
induces a dual form of collineation
uDy, = vD,. (2)

This means that, as x varies over the prime «, § varies over v. The primes « and v are
therefore related by the original collineation in the manner (2). This form is applicable
even when D, and D, are singular.
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We may reach the same result by starting with five primes o, £, 7, ¥, d containing the
medials, 4, B, C, C’, D respectively, and such that
y=>f—>a—>8->v, (3)

so that afly are coaxal and so are ady’. This sets up a collineation between two such
primes y and y’ of C, say [4, 0] and [v, 0], which meet the medial 4 in two of its primes
u and v. The whole relation between « and v is then

[u, 0] = [u, —u] =[O, u] - [04,,0d,] > [v, 0], (4)
which is satisfied when
u=—wldy, v=wd, 0=I[w,...,0] (5)
From this parametric form of the collineation between « and v we deduce the form
Ayt 4, =0 (6)

for the point collineation, by taking ux = 0, v§ = 0 for all .
Since the same space D is now regarded both as a locus {D, 0, D,0} and an envelope

[wd,,wd,], we shall have
[wd), 04,]{D,0, Dy0} = 0

identically for all values of w and #: for this last condition merely states that every prime
of the envelope must contain every point of the locus. Hence
4,D,+4,Dy = 0, (7)
a condition which holds universally whether either of 4, or D, are singular or not. But
if |Dy]#0, then 4,=-4,D,D7'=—4,K,)
if |D,|#0, then 4,=—4H,
alsoif |4,|#0, then H=—A7l4,, ,
if |4,]#0, then K=-—-454,.

(8)

Ficure 2

The figure illustrates the case for [5] when the medials 4, B, C, D are planes. The
prime « is a [4] containing the plane 4 and the [3] G (which have a line  in common).
This G cuts B and C also in lines called ». The prime f contains B and G while y contains
C and G. These three lines  are the simplest visible sign of the relation ¢ —f -y between
the coaxal primes. Simultaneously o+ 4d-y’ gives rise to three lines v of 4, u of C and
v of D which lie in G’, another [3].

When the line « varies in the plane 4 but always passes through a fixed point «, the
corresponding lines # and v pass through related points b, ¢, d, a": and the connexion
with the original figure is evident.
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In general there are £ distinct positions of « in A4 for which « and v coincide, and so
do G and G'. They answer to the latent primes of the collineation and to coaxal sets
%45 Bus Vs 04 and to a dual form of theorem 3.

(GEOMETRICAL CONSTRUCTIONS OF COLLINEATIONS

10. Before considering the bearing of this on matrix theory, let us notice a few
particular consequences. :

(1) Three pairs of points x, ; #', £'; x”, £” upon a straight line 4 define a collineation
on the line.

To construct it take any two further lines B and C in [3] which are skew to each
other and to 4. Then draw the transversal lines xyz, x'y'z’, x"y"z", and thus obtain three
lines &z, £'Z', £"z". Any transversal D of the latter completes the figure from which any
number of further pairs of points x, £ of 4 can be found. Also the four lines 4, B, C, D
then have two transversals, the ratio of whose cross-ratios will be constant for all the
ool positions of D, and will be equal to the latent ratios of the collineation. The oo! of
positions D will be a regulus of a quadric surface.

(2) In [5] four planes 4, B, C, D in general position have three transversal lines.

(3) To construct any number of related pairs of points in a plane 4 having given
four such pairs, and to find the latent ratios of their collineation, take two further
planes B and C'in [5], all mutually skew, and construct four lines £z as before. Take any
point ¢ on one line, and the prime through # and two of the remaining three lines £z.

Such a prime will cut the fourth line in a point ”. The two other of (g) combinations

yield points ¢, " on the second and third of the lines. All four points #'t"t” then lie
simultaneously on three primes and therefore in one plane of [5], the plane D, which
completes the collineation. Since ¢is arbitrary on the line {z, D is one of 00! such planes.

For all such D the three transversal lines of the planes 4, B, C, D are cut in cross-
ratios proportional to the three latent roots of the given collineation between & and £.

(4) Given n+ 2 pairs of corresponding points x, £ in [7], to find the collineation and
its latent ratios, proceed similarly by constructing one of co! medials D from three
skew medials in [2n-+ 1] derivable from the given pairs of points.

(5) The above theory is also that of two scrolls # and %’ which have a distinct pair
of strata 4 and C in common. One is defined by 4, B, C, and the other by 4, D, C.

(6) The scroll Z is its own polar reciprocal with regard to each member of the
quadric pencil x'x = 1y'y.

For this pencil is Xx? = A2y? and the result follows from the identity of the dual
forms x:y = constant and «:v = constant, for the equations of Z.

CLASSIFICATION OF A COLLINEATION

11. The general matrix pencil pD, + oD, of k£ rows and columns can now be inter-
preted in terms of the scroll # (defined by the medials 4, B, C) and the space D, this
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latter being a [£'] with £’ <<k. Such a matrix pencil is known to be capable of the
canonical form
pD,+ oD, = diag (LlaMm: N,, 0), (1)

where L, denotes a non-singular core, A/, a singular matrix of row dependence, N, one
of column dependence, and O a zero matrix. Various cases arise according to the
presence or absence of one or other of these four parts.

First let , only occur. According to the theory of Weierstrass (1868) the non-singular
core then consists of, say, 4 isolated latent matrices: that is

Ll = dlag (Lel$ -Le29 '“9Leh)’ (2)
where ap+0o b
Leiz ) Wrr P ) 5 (3)
ap+-o

with ¢, rows and columns, and with ap + ¢ occurring ¢; times on the diagonal, p occurring
once less on the over diagonal, and zeros elsewhere. This linear expression ap+0 is a
factor of the characteristic determinant |pD,+ 0D, | of the pencil. Furthermore, in
this non-singular case, the determinant satisfies the relations

9Dy 40D, | = | L = | L] | L] ... L] #0. (4)

Also ¢;+¢,+...+¢, = [ = k. Each L, is a latent matrix, whose determinant (ap+ )¢
is an elementary divisor with an exponent ¢, Following Segre (1884 4, ¢) we characterize L,

by the expression
((ereg...) (6penn) con (oon 1)), (5)

where exponents which correspond to the same value of « are grouped within a paren-
thesis. The ordinary case is given by (11...1), when there are n distinct values of «,
and the scroll Z is met by D at n points one on each of the z strata a.

From (3) it follows that the coefficient of ¢ in (2) is the unit matrix of order £, so that
| Dy |0, and D must be a medial in this non-singular case.

Let the co-ordinates {x,y} of a point of the scroll #Z be expressed as a two-rowed

matrix
[xl:l _ |:/l¢1, ABas s /I¢k:| (6)
yl /”¢1: /‘¢2s cr /‘¢k ’
where the ratio A:x fixes a stratum, and the £ parameters ¢, fix a point of the stratum.
In this notation the typical point {D,8, D,6} of D appears as the two rowed matrix

B‘] ~16,,0,,...,0,], (7)

where each of these A blocks is of the type

_ [aby+0,, ab,+0, ..., ob, 40, ab,
e /" 0, s Op_15 b,

In fact the first ¢; co-ordinates x;, and also the first ¢, of the y;, are obtained from the
coefficients of p and ¢ respectively in Z, 0, since L, = pD,+-0D,, where 0 is a complete

0, (6=0). (8)
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set of k£ parameters which includes 0, ..., 8,,_,. Similarly for each further 6,, with ¢
new parameters 0;, until all the 2, = k£ parameters are exhausted. The verification is

straightforward. The case ¢; = 1 has for its @ a single column [Ofo] .
0

By identifying (6) and (7) we obtain all possible points common to D and Z. It
follows that, within each set of ¢; columns, corresponding to an elementary divisor and
therefore to a 0, there is exactly one common point, given by

0,40, 0,=0, 1>0. ' (9)
For the first elementary divisor we may take the point to be
a 0, ..., O
s =4d =[ S ] 10
L. 1, 0, ..., 0 <A)

namely, s; a point of the stratum §, which coincides with 4; a point of D. Since the
ratio «:1 defines this stratum, the possibility of S being the stratum 4 is excluded,
although it might happen to be C, with « = 0.

In the regular* case, when algebraically there is just one invariant factor, each ¢; belongs
to a distinct value of a, so that D meets # at & separate points one on each of /4 strata.
In the irregular case, let exactly ¢ of the ¢, belong to the same «, so that exactly ¢ of the
initial parameters 6, 0;, ..., from g of the blocks can simultaneously be non-zero. They
will consequently furnish a linear [g— 1] space common to D and #, given let us say by

aby, 0, ..., aby, O
S =D — i}) y ) 09 9 esey ...] 11
w=Luw=14 0. ... &, 0 ... .. (11)
which satisfies both (6) and (7). This space will lie in the stratum «, and D can only
meet this stratum in this space.

It is now possible to describe the meeting of D and & in terms of the Segre charac-
teristic (5), which is best written as a matrix of positive integers ¢;,

€11 12 &
X X X X
E =61 €22 - y X X X (12)
. X
€y

where the £ integers ¢, ..., ¢, are now arranged in rows and columns, each column
being associated with a particular value of a. Within each column the elements are
arranged in descending value. The lengths of the rows and of the columns diminish
(if necessary) from above to below and from left to right respectively, so that the
non-zero portion of & forms a fableau, whose shape is rectangular or else is bounded on
the right and below by a zigzag edge.

In this notation the matrix pencil has ¢ invariant factors, one for each row of &, each
such factor consisting of the product of the distinct elementary divisors represented by
the row. Collecting these results we have the theorem:

TueOREM 4. When the matrix pencil pD |+ oD, is non-singular, then D is a medial which
meets the scroll X on j different strata, where j is the number of distinct latent roots a, that is the

* Segre, Encyk. p. 844, The word is due to Predella.

Vor. 239. A 8oj 31
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number of distinct linear factors ap+o of | pD,+0oD,|. Furthermore, within a stratum S(a),
D meets R in a [q' — 1], where q' is the number of different elementary divisors (or invariant factors)
associated with this latent root o.

The particular form (3) above depends on the non-singularity of D,, that is, on the
failure of D to meet the stratum 4. Were D to meet 4 without | pD, + oD, | vanishing
identically, a change of basis to a new 4, distinct from C and not meeting D, could be
made before reducing the pencil to the above canonical form. The condition (4) is,
however, characteristic of the non-singular case, and the above integer j is essentially
finite.

MULTIPLE CONTACT OF D wiTH %

12. When any exponent ¢, exceeds unity several intersections of D with % have
evidently coincided, and D may be said to have p-fold contact with %, where p = ¢,— 1.
This may be interpreted geometrically as follows:

Let a,, b,, ¢,, s; denote those points of the strata 4, B, C, S which lie on the generating
line g; (as given by the vanishing of all ¢ except ¢, in §11 (6)). Also g =0 for a;, A = 0
for ¢, A = pfor b, and A:p = a:1 for s,.

Further, let 4. .. denote the space defined by, and containing, the independent
points a;, a;, a, .... Similarly for the other spaces. Finally, let 4; denote that point of D
for which all § except §,_; vanish in § 11 (7). When 0, alone is non-zero there is a point
d, coinciding with s, ; but when 6,, ¢, alone are non-zero we obtain a line, say,

_ _ [aby+-0,, by, 0, ..., O:,
dldz_—Dlzn_[ ﬁo, 01, O, seey 0 ) (1)
This is the sum of two matrices, each of £ columns,
g aby, ab;, 0, ..., O:I 0 = 0, 0, ..., O:,
2716, 6, 0, ..,0 Lo o0, .. 0J

from which we infer at once that the point g, of 4 is in line with any point s of the /ine
S;, and d of the line D,,. Conversely, since 0,, 05, ... all vanish, the only points 4 and s
of D and S respectively, which are in line with a; of 4 must lie on the lines D, and ,,.
Hence (§2 (9)) the point g, is reflected through D to the /line §;,, namely,
a, D> S,.

Again, when all § except 0, 0,, 0, vanish we should obtain a plane D, a plane S;,,,
and a line 4,,, such that any point a of 4,, is in line with 4 and s, if and only if d is on
D55 and s on §},5. And so on.

Now suppose that D meets # at a point d; belonging to the elementary divisor Z,
(¢ =p+1>1). Then d, is 5; a point of the stratum § which may be reflected along a
generator g, through B to a, of 4, and thence through D to S, and thence back through
B to 4, and so on alternately. The result will be

dy = s;=>a; 58, A,,>8 193> A195 ... >S5, — 4,

where ,= S}3.... The process will terminate at the pth stage since the parameter 0, ,,
does not exist in the matrix @, to provide a further point s, ;, so that the process would
thereafter merely repeat the eth spaces of §'and 4 identically.
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Hence the given point 4, common to D and # defines uniquely in 4 a point a;, a
line through it, 4,,, a plane through the line, 4,,;, and so on until a [p—1] is reached.
There is a corresponding nest of spaces within each stratum, including S, and further
a unique set

(D), =d,, Dy Dig3y veey D,
of such spaces in D. The p+ 1 successive points dy, d,, ..., d, which define this set may be
called a chain of length p. Since each such point depends on one new parameter 6,,
when the choice of the first 7 such points has been fixed, the next point lies on a fixed
line within its space D;_;,,.

We now have the following result:

THEOREM 5. When the matrix pencil is non-singular, each meeting point of D with R other
than an ordinary intersection (¢ = 1) seis up a chain of points with a length p = e— 1. This chain
is obtained by successive reflexion of the initial point in B and D alternately, and is one of oo?
such chains starting at the same point and lying in a fixed nest of spaces (D),. The initial point is
then a point of p fold contact between D and A.

CoROLLARY. In the regular case, when the non-singular matrix pencil has a single invariant

Sactor, D meets X at isolated points on distinct strata, each of which sets up a separate chain.

THE CASE OF SEVERAL INVARIANT FACTORS

13. This case can be investigated by the same methods which are best explained by
a typical example. We assume D to have a characteristic & with j columns, so that D
meets the scroll #Z on exactly j different strata. Let it meet one such stratum . in a
[¢'—1], so that ¢’ of the elementary divisors belong to §. Each point common to D
and § will have a chain as before, but these chains will not necessarily have the same
length, and it remains to examine them.

For example, let exactly three indices of & belong to the root «, and let the corre-
sponding part of D be given by

l:x’]: aly+0,, al,+0y aly+0s, abs+0,, ab,, aby+01, b, oa%:l
yl HO) ‘91) ‘92) 933 04) 6) {a 06

= [0, 0, 0"]. | (1)

This part of D is a [7], say D, 5, where d; denotes the ith point and answers to the ith
among the eight parameters 0, ..., ;. (Thus d; is given by all except §, vanishing.)
This Dy, meets Z in a plane S5, say, which belongs to the stratum S. Points of this
plane are given parametrically by 6,, 6, 6; non-zero, the rest zero.

By a nest of spaces in general is meant a set X, X}, X,, ... where X" contains 2,
2| contains Xy, etc. Itisuseful to note that if two such nests overlap, their common parts
also form a nest. For if PQ, QR are the initial spaces of the nests, with a common space
@, the common space @, of the second members of the nests must necessarily belong to
Q: and so on.

Now reflect S;4 through B to 4. This gives 4,45. Inspection of (1) shows that
the only points of 4,5 which are in line with points of D and of § are those where
0,, 0; are non-zero, but 0, = 0; = 0, = 0. This means that reflexion of 4,5 through

31-2
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D to § produces the space S; 4,4, Obtained in fact by retaining those parameters whose
suffixes are 0 or 1 only. Thus

A g5 D > S)9675-
When such alternate reflexion in B and D is continued as before, we obtain the following

result:
D65 = 168> A165 > S12678 > A12678 > S123678 = A123678

> 1234678“’>A1234678—»S8!*Asl- (2)

Thereafter the sequence is stable. These terms are derived as in § 12 by adjoining a new
non-zero set 0;, 0;, ... at each double-arrow stage (i = 1,2, ...) until the parameters are
exhausted. The process therefore determines the nest of spaces 4,45, 419678 41236785 -+ -
but not the precise positions of the points ay, ..., ag.

Now consider the tableau ‘% x x x

xx (3)

X

which is constructed columnwise by placing 3 marks in the first column, 5 marks in
the first two, 6 in the first three, 7 in the first four and 8 in the first five, according to
the numbers of suffixes in successive 4’s. As a result the numbers of marks in the rows
are 5, 2, 1, which are the indices of the elementary divisors, as shown by the structure
of the matrix (1) with its five, two, and single column blocks @, &', 0".

But this feature is true in general and gives the values of the ¢ indices ¢ for the elemen-
tary divisors belonging to one stratum, by counting the marks on the rows of the
tableau. For the shortening of the columns is due to the falling out of the second-term
parameters in the top row of (1), so that, for instance, the third mark in the second
column fails since no 0] is present, and the absence of ¢; shortens column 3.

In general therefore D meets a stratum S of Z in a [¢—1], letus say S,. By alternate
reflexions in B and D respectively this gives

Spe—> Ay > S, > A, S, —~ ..., (4)

where either set (4,) and (S,) is a nest of spaces each of which is contained by its suc-
cessor. From the dimensions of either, say, v, —1,v,—1, ..., we form the first differences
€15 €9, -..; thatis
: €L =V, €y =Vo—V], wery E=V;—V,_|, ... (5)
The manner of generation shows that they satisfy the relations

66,26, ... (6)

We then construct a tableau whose columns are of lengths ¢, ¢,, ..., which represent a
partition {¢, ¢, ...} of the positive integer 7 = X¢ (or v,). The same tableau gives what is
called the conjugate partition {¢,¢, ...}" by means of its rows. Hence the partitional relation

{e165...} = {e1ey... ¢} (7)

gives the indices ¢, of the elementary divisors corresponding to the root a.
For example, {32111} = {521} for a pair of conjugate partitions of 7 = 8 in (3).
THEOREM 6. The total meeting S, of D with the stratum S of the scroll R, in the non-singular
case, gwes rise, by successive reflexion in B and D alternately, to a nest of spaces (4,) in any other
stratum A. The first differences, of the dimensions increased by unity, of successive members of the
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nest constitute a partition of a positive integer m, whose conjugate partition yields the set of indices
¢ of the elementary divisors belonging to the said stratum.

POLAR CHAINS OF POINTS

14. While the above method of reflexion gives the indices of the elementary divisors
it does not give the precise distribution of corresponding intensities of contact between
D and #. Each point d of the [¢' —1] common to D and the stratum § will initiate a
chain whose index is one or other of the indices ¢ belonging to the corresponding
column of &. It remains to find them.

To do this we define a certain space [£] as the fangent supermedial (T.s.M.) of a point
¢ upon Z, namely, one given by the £—1 linear equations

1 — Ay, _ =AYy

T, b o
Here x, y are current co-ordinates, and the ratio A:x with the ¢, give that point {A¢, ug}
of # to which the T.s.m. belongs. It is readily seen to be the space of dimension one
higher than that of a medial, and it includes and is determined by the stratum § and
generating line g which intersect at the point ¢ of Z. It is also the common part of all
those tangent primes of the quadrics x;7; = #;y; which have a point of contact at this
point ¢.

By the polar supermedial (p.s.M.) of a point d, which need not lie on %, is meant the
T.s.M. of that point 5, belonging to the stratum §, which is obtained by reflecting d through
4 to a point ¢ of C, and ¢ again through B to s of §. That is a»d-»¢—B—s, or

{D,0,0}>{D,0, D,0}->{0,D,0}—B—{AD,0,uD,0} = s. (2)
Hence the equations (1) give the polar of d = {D,0, D,0} by taking D,f = ¢. Such a
polar is defined with respect to Z and S. When d is on Z the polar becomes the tangent
supermedial.

The chain of points d,d, ... d, of Theorem 5 can now be generated in an alternative
way according to the following theorem:

TueorREM 7. When D touches X at an isolated point d, = s, of a stratum S, then T the
tangent supermedial of dy will meet D in a line D, through d,: also P, the polar of any new point
d, on this line will meet D in a line D4 through d,: and Py the polar of any new point dy of D\,
will meet D in a line D\, through d,; and so on, until a point d, is reached, in p = ¢—1 steps,
whose polar meets D in the point d, only.

Such a polar chain, of length p, is one of co? chains of equal length initiated by the
point 4, of index ¢: and it is identical with the chain of theorem 5. The points d; also
determine the same nest of spaces d,, ..., D, as before.

Proof. Take A =a, g =1 in (2), and let d = {D, 0, D,0}, any point of D, be denoted
briefly by {#}. Consider then the following sequence of points of D,

dl———{go, 0, cee ceey 0}, go#o,

dy =4, & O, ... RS 0}, ¢, arbitrary, (3)

............................................

=, =

dez{gpa gp'—b ) gla g()) 0, ..., 0}, gp arbitrary,
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where the 8 successively take these particular values ; or zero. When D touches Z at
an isolated point we may take the corresponding © of §11 (8), and d; to be the point of
contact. For this point we have ¢ = D,0 = {£,,0, ..., 0}, so that (1) gives the tangent

supermedial of d; as
7-1; xl—‘“yz=0 (i:2,3,...,k>o

On substituting in 7] the parametric values of the #; and y; as given by

o[0T ], nmg—0 (k)
0’ seey
we find that all §, must vanish for :>1. Hence D meets 77 in a line {0, 0,, 0, ..., 0} with
arbitrary 0, 0,. Any new point of this line D, other than d, is therefore d, as shown
above. :
Having chosen d, and therefore &, £;, we similarly find P, the polar of d,. Itis

Py M Ty oy =0 (i=3,...,k), (4)
& & :
and this meets D only where 6, /¢, = 0,/&, and all §, vanish for ¢> 2, as is again seen by
substitution. Such a point of meeting is the above d; with &, arbitrary. It must therefore
lie on a line D, through d;, and so on.
But at the stage F,,, the corresponding substitution gives

0, 0, bpoy O

Pl Ty 5

5, G g & )
so that D meets the polar where all d; except ¢, vanish, that is at the point d; only.

Q.E.D.
The space D,, is then the locus of d, for all its £; arbitrary; similarly for its subspaces.

This gives the nest (D), of theorem 5.

TurEoREM 8. When D meets the stratum S in an [¢,— 1] space D', then the T.s.M. of 8, any
point of D', will meet D in an [e,] space D" containing D ; and the polar of any point 8, of D"
outside D’ will meet D in an [¢,]: and so on, until the stage when the new space D'® coincides with
D'. Thus each point of D' has a chain of a certain length p = e—1; and this index ¢ will be one
or other of the ¢; associated with this stratum.

Progf. Consider the points

O, =1, 0, ..., 0, £, 0, ..., 0, &0, ..}
: {go g? ’ /(/) " } CtC.l (6)
32:{g1) g()’ veey O’ gl’ gOa [EXS} O) gla 0 }; J
defined analogously to those of (3), but with one set £ or £ or £ for each block
0, 0, @, of D belonging to the same root a. We assume ¢, columns of (6) to belong to

e, to &', eq to &”, etc., where ¢; =¢,>e,.
» €2 3 ) 1= €= 63
As in (8) each point J; is here stated by giving the £ parameters

0 = {00, 01, ..er 0, 0y . 0. Oy ...}


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

H. W. TURNBULL ON THE GEOMETRY OF MATRICES 255

particular values £, or zero, as shown. Proceeding as before, we find that the p.s.m.
of any point ¢ will meet D at a point, of parameter ¢, such that

Gridoteipy=01:04:...:0, 1:0:0,:...:0,, _1:0:0]:.... (7)

ea—
Hence, by taking the ¢, to be the §; of d;, we find that d, is the locus of intersection of
T, and D, with the §,, ], £] of the leading columns arbitrary. Similarly for d; from 4,
with &,, £, £5 arbitrary.

As in (5) above, the process alters as soon as a £§ reaches the end of its block. Since
¢, = ¢, > ¢4 this happens first for £; at the point d,,. If therefore 740, all earlier 0’s of (7)
would vanish for the next successive 8. Since 0,, 6, 0 are absent from (7), they, and
they alone, are arbitrary in the new J; that is, d,,,;, = d;.

Also the locus of 0 is an [¢; — 1] where ¢, is the number (three in the illustration (6))
of blocks @, while the locus of each subsequent J; has the same number of arbitrary
constants with a set of non-zero fixed constants. This gives an [¢,]. Q.E.D.

Allowing for repetitions of indices let ¢, ¢’, ¢”, ... and ¢, ¢, ¢’, ..., denote the distinct
values of the ¢; and ¢; in the partitions (§13 (7)) arranged in descending order. The

tableau, for example,
12345 x x x x x

6 7 X x (8)
8 x
will now give the partitions {e¢’¢"} = {521} and {e¢'¢"*} = {821%} by rows and columns.

By taking all the £ of zero suffix, in ¢;, and allowing them to vanish one by one,
starting from the right we obtain the following result:

CoroLLARY. The space D' common to D and S can be further subdivided into a nest of spaces
[e—1], [¢'—1], ..., starting with D' = [e;—1]. Pounts of the innermost space will have index
¢, further points of the next containing space, index €', and so on, until the remaining points of the
largest space D' have the smallest index e;.

The argument is made clear by the tableau. The above (8) when expressed in the
form (6) gives

31 = {509 Ty Ty Ty % g6> ) gﬁ ) 10C81 =D163-
If £5+0, the theorem shows that no further §; exists. Therefore D meets S in a plane
D'=D, g4, and any point of this plane except points of the line D4 ({5 = 0) has unit
index and no chain; the T.s.M. of the point meets D in D’ only.

Next if £5 = 0, then locd; = D4 (given by &, &), and J, exists. If also £, 0, then the
chain ends at d,. Any point of D4 except d; (§;, = 0) therefore has index 2.

Lastly, if £ = &, = 0, §,#0, J; is the point 4; only, and the chain can reach J;; that
is one point d, of the line D in the plane D, ¢ has index 5. The nest of the corollary consists
of this plane, line and point, whose dimensions are determined by the three different
lengths ¢, ¢’, ¢” of column in the tableau.

The case when several ¢; are equal, so that the tableau has several equal rows, is
easily analysed. Thus if exactly ¢, of the longest rows are equal then a certain [¢,—1]
of D’ would have points of highest index ¢,; similarly for the lower rows. The nest of
spaces in fact characterizes the increasing intensities of contact between D and Z.
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RATIONAL NORMAL LOCI

15. The nest of spaces formed by polar chains originating in a region D, common
to D and the scroll may be regarded as an osculating system of a certain rational normal
locus 4" contained by the scroll. For example, the point, line, plane, ..., [p] of such a
nest originating in a single point of contact 4, of index ¢ = p+ 1 prove to be the point of
contact, tangent line, osculating plane, ..., osculating [ p] of a rational normal curve /"
of order e. This curve which lies on & is contained by that space [¢] which is defined
by the [p] and the external point a, of 4.

In fact, the points [x',y"] given by the ¢+ 1 successive rows of

.................................

form such an osculating system for the curve
I':loc{o+v, av+22, ..., ww?+aw?*l, 0, ..., 0; 1, v, ..., v%, 0, ..., O}.

This is a rational normal curve of order ¢ with parameter » and fixed «. The values of 7,
oI/dv, £0%I"/dv?, etc., at v = 0 give the points represented by the successive rows of (1).
But the first row denotes the point d;: hence the first two give the tangent line, the first
three the osculating plane, at 4,; and so on until the final row gives the point a,, so
that all ¢-+1 rows give the space [¢] containing /.

Hence in the regular case there is one such curve for each distinct latent root « at an
isolated contact of D and #. The curve meets each generating line and stratum in one
point only.

When two invariant factors exist D meets a stratum § on a straight line, and this

. . x x x 123
gives rise to a ruled surface #" upon the scroll. For example, in the case s 45 0

D is given by
{aly+0,, a0,+0,, al,, ad;+0;, ab{, b,, 0,, 0,, 05, 0},

which meets Z in a line d, d, consisting of points of index 2 and one exceptional point
of index 3. Corresponding to this is the surface

N loc {au+uv, auv+uwv?, auv?+uvd, aw—wv, awv+wv?, u, w, w?, w, w}, (2)

where v and the ratio u:w are the two parameters of the surface, while « is fixed. This
surface evidently lies on & since all x;:y;, = a+v. Thus it meets each stratum where
v = constant, in a line, since ./ is linear in « and w. Also it contains co! normal curves
which are cubics (u:w = constant) and one conic (¢ = 0). Each of these directrix curves
meets each generator (v) of the surface in one point. As in (1), the points given by .4
and its successive derivatives with regard to v at v = 0, for a fixed ratio ¥:w, again form
a polar chain which defines an osculating system for the directrix curve through the
initial point d (u:w = constant). The order of the curve is the index of the initial point.
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There is one such surface A4 for each distinct latent root a, whenever there are two
invariant factors of D.

For the case of three invariant factors a twisted solid .#” is taken, consisting of co?
directrix curves I"lying on # and meeting each stratum in a plane; and for ¢ invariant
factors co?-! such curves meeting a [g—1]. The construction of 4" for these cases is
obvious. Perhaps the most interesting geometrical case is when all the indices are equal.

For example, for the characteristic ((222))

N loc {ou+uv, auv+w?, ..., au"v+u"v?, u, w, u', u'v, u’, u'v},

which is a surface of 002 conics in [11] each meeting the plane d; dsdy =D, ;; in one point.
The tangents to the conics at these points, which fill the plane, relate it to another plane
D,,, each tangent constituting a chain of length 1 (and index 2). Such tangents form
a stratified locus such as Z but in the subspace [5], that is in the medial D.

THE SINGULAR CASE

16. We now suppose that the matrix pencil pD,+ oD, = diag (L,, M, N,) involves
the singular matrices M or N or both. More expressly (Turnbull & Aitken 1932) we
take

M, = diag (M,,, ..., M, ), N,=diag(N,,...,N,), (1)
where each submatrix is of one or other type
v -
ocp po
M, = o._ ’ ]Vni = re . > (2)
p po
e o-—

with m; columns and m;+ 1 rows, and 7,4 1 columns and #; rows respectively. Further-
more, M,, must have m columns and m+ p rows, while N must have n+v columns and
n rows. Evidently

m=my+my+...+m, n=n-+n+..+n, (3)
so that the whole matrix pD, 4 ¢D, in its canonical form has /+m+n-+v non-zero and
independent columns, that is a column-rank 7, where

r=Il+m+nt+v<k, (4)
while the row-rank 7’ is given similarly by
v =l4+m+n+p<k. (5)

Hence also D is a punctual space [£"], where £’ = r—1, or else, as we shall see in § 20,
is a primary space [£”], where £ = 7' —1.

Proceeding as before we now find that the co-ordinates {x, y} of a point of D are given
by three types of matrix @, &, ¥, corresponding to the L, M, N; namely,

loc D — [’y‘] —[04s.000,, 81y ..., 8, P, ., B, (6)

Vor. 239. A8oj 32
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where 0 is as before. From (2) we find that

_[P 8285 o By _[Yo ¥ - Vi

Sl P B R ] g
where the leading zero of the lower line and the final zero of the upper line in each &, is
essential. In all these £+ p-+v submatrices the sets of parameters are entirely distinct.
Each 0, has its ¢; parameters, giving a total of / for the non-singular core: each @, has
m;, and each ¥, has n;-+1: in all m and n+v respectively by (3). The £ parameters
of # in the usual {D, 0, D,0} are these [+m-+n+v = r parameters, in this order, followed
if necessary by £—r zeros.

"The points common to D and Z can be found as before, by equating (6) to {0, a0},
piece by piece: that is, the upper and lower rows of (7) must be proportionals. This at
once gives all ¢, zero, so that no point d of Y can lic on Z. Also for each ¥ the co-ordinates
must be in geometrical progression, and the parameters corresponding to ¥; must be
of the form

¢ = {pp, pp~lo-, pp_202> XD o—p} (p - ni)? (8)
to a constant numerical factor. Hence each space ¥; of D meets Z in a certain rational
normal curve .#; of order 7, and this curve meets each stratum (p:¢) once and once only.

If v = 2, then D contains ¥, and ¥,, so that it will meet % in a rational normal

surface /", whose typical point is

¥ro={upt,up?~lo, ..., uct, wpd, ..., wo?} (p=ny, ¢ =n,), (9)
where the terms in # correspond to ¥, and those in w to ¥,. For this is the most general
solution for ¥ and #; similarly for higher values of v. Such a locus .#" will meet each
stratum of Z in a [v—1]; it is of the type already noticed in connexion with osculating
systems.

On combining each @ which belongs to a stratum S(«) with the whole set ¥, we
obtain the complete meeting of D with S. It will now be an [¢, +v—1], which contains
the space D’, an [¢;—1], peculiar to S as before, together with the [v—1] in which 4"
meets S. This D’ is no longer unique within S, as it was in the non-singular case, but may
be any portion of the larger space [¢; +v— 1] provided that it is entirely distinct from .4".
Hence

TuroreMm 9. If, and only if, D meets each stratum of R, then the matrix pencil possesses a
singularity N of column dependence. D will then meet each stratum in a [v— 1] with the possible
exception of h separate strata, each of which D will meet in an [e+v— 1], where ¢ is the number of
elementary divisors associated with the particular stratum. And if these meeting spaces of D and R
do not completely define D, then D must also contain a singularity M of row dependence.

MINIMAL INDICES OF COLUMN DEPENDENCE

17. The method of reflexion can now be applied to any stratum S, and it will give
all information about the singular form N as well as the original form L. In fact let D
meet S in the space S,, an [¢+v—1], and therefore admit a certain nest of spaces
(S,) through successive reflexions

Sﬂo%Am%Sm-}Amﬁ»““ (1)
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Assume one or more ¥, to occur, else no new feature arises. Since D will now meet each
stratum, we can take S to be the stratum C (¢ = 0) without loss of generality. The total
meeting C, of D with Cis then comprised in the blocks © and ¥ of the types

70, 0y ... e Pama
o= 0, 0, e2‘981] v e Y @)
On putting all the parameters of the upper rows equal to zero we have ¢, and ¢,
the first  and last ¢ of each such block, alone non-zero. All such 6, ¢, therefore give
the meeting C,, of D with C. Proceeding as before we obtain 4, from the same columns
as C,, and then C, from the corresponding parameters, 0, ¢, and ¥, ¥,_;; and so on.
The result will be a tableau which specifies the exact number of blocks ©® and ¥, and
the indices ¢ or 7, and the length of a chain initiated by any given point of C, ; but it
will fail to distinguish between the two types @ and ¥, or the indices ¢ and 7.

But on taking 4, , the meeting of D with 4, we may derive another sequence
Ay, Cy, > Ay, Cy > ... ‘ (3)

in just the same way, which will specify the corresponding blocks " and ¥ belonging
to A. From the nests (4,) and (4,), so derived by the two processes (1) and (3), we can
then select the common nest (4,), that is, the set of spaces common to corresponding
members of the two nests: and the common nest will provide the tableau belonging to
the ¥ alone.

For example, consider the eight-columned form

6, . 600 0 vy ¥, ¥ , ,
Dz[‘ 0 01 0z Vo ¥ ,:|: 0,0, W, . 4
b 0 0] 6, . 1 Y yid ] (4)

column number ... 1 2 3 4 5 6 7 8.

Here D meets C at C};4 only, as given by 6, ¥,, ¥, : and meets 4 at A5 as given by
05, ¥y, ¥o- The reflexive operations then give

Ciz8—> A7 Clazes > A12768 > Clazes — etC-a}

()

Aseg—> Cygg = Asgg78—> Caae78 > Asyse78—> etc.,J

both having become stabilized. The first set gives a nest of spaces 4,75, 49765 With a

X X
tableau x x, obtained as before by counting the suffixes by columns. The second gives
X

X X X
the nest Asgg, Assg7g> Asas678 With the tableau « x . The lengths of rows give the ex-

ponents 2, 2, 1 of ¢ and z for C, and 3, 2, 1 of ¢’ (say) and n for 4. But the overlap in the
nests yields first a single point ag from 4,5, 4565 and then a plane 44,4 from the next
pair, and thereafter nothing new. This common nest segregates the singular ¥, with a

tableau z * or g 7, from the remaining row x x of C'and x x x of A, showing that C

has one exponent ¢ = 2, 4 has one ¢’ = 3, while two indices n (1 and 2) are singular.
These indices n, which specify the precise type of meeting between D and the whole

set of strata are called after Kronecker the minimal indices of column dependence.
32-2
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In the case when the stratum 4 has no non-singular meeting with D the process (3)
yields the minimal indices at once as the row-partition of the tableau for (4,). Also,
to find each set of non-singular exponents ¢, the process (1) must be applied to each of
the 4 strata § in turn.

It should be remarked that any further blocks @ belonging to strata distinct from 4
or C, as well as any of the @, have no effect upon the nests obtained in (1) and (3).
Also the process applies as before when there are any number of blocks @ or ¥, belonging
to 4 or C or to the singularity N. Thus we have proved the following result, generalizing
on theorem 6. '

THEOREM 10. In the singular case the total meeting S, of D with any stratum S gives rise,
by successive reflexion in B and D alternately, to a nest of spaces (A,) in any other stratum A.
The conjugate partition of the consequent set of first differences yields the set of minimal indices
n; of column dependence (the same for each stratum), together with such of the exponents e; as belong
to S, in the case of h distinct strata.

Answering to the complementary reflexive processes (5) we may use complementary
tableaux—a left and a right:

X X 21 XX 21
X X X 3 4 5 X X X 3 4 5
6
X X 6 7 ’ « x 6 7’ ( )
X 8 X 8

the former to be read by columns from the left, and the latter by columns from the
right. The marks on the rows may be moved horizontally like beads on an abacus.
Marks belonging to 4 and C are arranged in separate rows and columns, A4 left and
C right; while those belonging to N are pushed home to the left under 4 or else to the
right under C. In general the schemes are

e e
T =T, and 7, =7, (7)
Ty Ty

where 7 is the tableau for the one or more blocks © belonging to A4, while the accented
T¢, Ty are right-tableaux for C and N, and 7} is the corresponding left-tableau for N.
Had 0’ in (4) belonged to C, with §; leading off on the lower row, 7} would have been

5 i é The columns, read respectively from the left and from the right, then indicate

the nests of spaces (4,) and (C,) derived by the above reflexive processes; but, for this
purpose, 7;; must be regarded as out of action in the left, and 7, in the right, tableau.

If x and y are two points chosen from the first column of 7y they must manifestly
occupy different columns in 7y, unless they belong to rows of equal length. Those
elements x at the left end of the shortest rows of 7 will therefore appear in a later
column of 7}; (read from left to right) than the y of a longer row. (Cf. x = 8, y = 6 in
the illustration.) But the first column of 7~ represents 4 1> While the first, the first two,
the first three, etc. columns of .7, read from right to left, represent the successive

members of the nest (C,). Hence the first points of the spaces of (C,), taken in this
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ascending order, to lie in 4, are the x: that is, the space of all these points x is uniquely
determined by the intersection of 4, and (C,).

Thus if there are exactly ¢ least minimal indices 7, there will be ¢ po'nts x, and a
unique [¢—1] within the stratum 4, derivable from the processes such as (5). This
singles out for special prominence that co?-fold directrix A}, belonging to the locus A",
which is of lowest order »; and which meets each stratum in a [g—1]. The importance
of this directrix was first noticed by Segre (1884a: cf. Edge 1931).

For example, in (4), n; = 2, n, = 1, so that v the number of the »; is 2; and ¢ =1
corresponding to the single ¥’ of least order. The locus 4" of D is given by the five
parameters ¥, ¥, and meets each stratum in a line (v = 2). It meets 4 at the line 4,
(where ¢, = ¢y, = ] = 0) and C at Cy4, and is a ruled surface. The oo! directrix curves
meeting Agq are conics except for a unique straight line ', the generating line agcy of #
in fact.

Had ¥’ been Vo 1,] with an extra 9th point its tableaux would have been

yi v

Ty = g ; = Ty and all the directrix curves would be conics with no distinctive points

on the line A4 which they all meet.

Incidentally the above geometrical process throws light on the somewhat obscure
algebraical fact that in reducing a matrix pencil to canonical form it is the minimal
index of lowest value which first presents itself.

When D has a single minimal index #, and therefore a single curve ./, of order ,,
the canonical form of the corresponding space ¥ is explicable as follows: This curve
meets two strata 4 and C in single points g, and ¢; say. The osculating systems of these
points interlock and at once give rise to chains a,a, ..., ¢/¢; ... of index n;, where the set
¢} is the set ¢,c, ... in reversed order. This process fixes the frame of reference which leads
to the canonical form of ¥. It may be verified by the methods of § 15.

For example, if 4" is a twisted cubic and 7, = 3, then ¥ is the containing [3]: 4, is
the point where /" cuts 4, a, is where the tangent at 4, to 4" cuts the osculating plane
of ¢/, and a, is where the osculating plane at a, cuts the tangent at ¢} : and vice versa.
Also ¢ =c3, ¢y=¢y, ¢3=c¢,. Similarly for higher values of n,.

Similar remarks apply to the general case of several indices 7. The interlocking of
osculating systems of 4 and C determine the intermediate points of the canonical frame.

MINIMAL INDICES OF ROW DEPENDENCE

18. By transposing the matrix D to 4 and working with reflexions of primes instead
of points we can derive the minimal indices m; of row dependence for the singular
pencil. But it is interesting to derive them directly in terms of points as before and this
is done by starting with the fotal reflexion of D in either 4 or C.

In fact, let 4, and C, be these total reflexions of D; and let C, be the reflexion of 4,
through B to C, so that 4,—C,. Further, let

Co = (Cor Ca) (1)
denote the space common to C, and C, when they overlap or coincide. When they have
no point common let C; = 0. It is convenient to denote this geometrical construction
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of C; from C, and C, by the implication sign >. Thus we shall have the sequence,
C,~A4,—~C,> C;, which may evidently be iterated:

CpAy—>C, > Chs Ay Cl > Clhs ... (2)

Let this process be continued until either all successive spaces C? become identical or
else are exhausted. In this way we obtain a nest of spaces

(C))=Cyy Cy, Cgy ... (3)

of diminishing dimensions, which lead to the following theorem:

TueoOREM 11. The first differences of the dimensions, increased by unity, of the successive
spaces in the nest (C,) form a partition of an integer, whose conjugate partition gives the minimal
indices m; of column dependence, together with those exponents e,, if any, which belong to the stratum C.

Proof. As before, the reflexive process applies independently to each block @, ¢ or
¥ of D. It will be shown that this has no effect upon any, except the ¢ and those @
which belong to C.

For any such ¥ = [50 o Ve I:I we shall have 4, = 4,,.,, as given by the n para-
L -

meters of the upper row, and C’d = C),..., from the lower row; so that the process merely
gives

C,»>A4,~C;>Cy—>....
Similarly for the @ of § 13 (1) with a5 0. Also for the case

, [ 0) ... 6, 0,
=109, .. 0, '], (4)
which belongs to 4 we have, at once, 4, = 4,,..,, C; = Cy,.. ,, where ¢ = p+1, and so
C =Cl—>>Ae,—%C,DCp,—>> (5)

with C; unchanged throughout. But for the case C (a = 0) we have

o=[y )

and Co=Cou>A4,~>Cp>Cy> A, 1 —>Clh1yidCoppyi> ..., (6)

where a nest (C,) is formed, consisting of a [ p] and lower spaces, diminishing by unit
steps to the single point 0, and then vanishing.

Lastly for ¢ = [¢1 4. ¢2 . m ; ] we evidently have 4, = 4,, ., C,= Cy;.. .1, where

as always the suffixes refer to the columns of the block. But (Cy,. ,, Cys.. 1) = Cos._,
Hence
C,= Czs...,m+1 Ay = Cpid ({237,;">> ceey (7)

where again a nest (C,) is obtained which falls one step at a time, until it is exhausted
in m steps.

On combining all these results a nest (C,) is formed, whose stepwise fall in dimen-
sions will be entirely due to the @ of C and the singular @; and the result follows.

CoroLLARY. By choosing C to be one of the strata which does not belong to the non-singular
core of D, the process gives the set of minimal indices explicitly.

For in this case « cannot be zero.
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CHOICE OF CANONICAL FORM

19. At first sight it would seem that this method of total reflexion supersedes the
earlier method in giving all information about the exponents ¢; more readily even in
the non-singular case: but this is not so. The nest (C,) terminates with a space C, which
includes those parts of D given by the ¥ and 0, excepting those @ which belong to C.
Similarly for any stratum . Hence the process does not in general locate precisely the
meeting of D and S already denoted by S, . Both methods of reflexion are in fact required
to complete the geometrical theory.

For example, let D = [¢1 b - P y o D :I, with g+ 7 columns in all, where

c Py P00 o
D, denotes u columns referring to neither #, 4 nor C. Here m; = 2, my =1, ¢, = 2,
Cyq = Cy3567,5 to use an obvious notation, the last suffix ¢ denoting a set of x single
suffixes. We should then have a nest

(Cd)5023567,u> Czslu C,u

where the first differences in numbers of suffixes are 3, 2, with a tableau x x , so that
X

the indices m and ¢ are 2, 2, 1. The corresponding nest for 4 (found by interchanging
the roles of 4 and C) is
(4,) EA1246/0 A26,u> Aﬁ/u

where suffixes drop in steps 2, 1, so that the tableauis ; *, and by the Corollary belongs
to the m; alone. This shows that the extra index in the C'tableau indicates the single ¢ = 2.

By the theorem, any further reflexions of C, and 4, merely repeat these spaces,
which thus form a kind of permanent core to the nests. The extra dimension of 4, is
due to the special contact of D on C. Had both strata 4 and C been chosen free of such
meetings then their cores would be equal, and related by 4,—C,.

On taking the basis 4, C free of such meetings we therefore obtain the permanent
core in either, and consequently the permanent core D, of D which is the part (or whole)
of D determined by the complete intersection of D and #. Usually this does not account
for the whole of D since the part due to the singular @ is omitted. This can be found

“geometrically as follows. Let £ denote any subspace of D supplementary to D, so that
E, D, together define D. Then the total reflexion of £ must produce nests (C,) and (4,)
which retain the minimal indices m; only. The form & then belongs entirely to the
subspace E which breaks up into further separate subspaces E; of dimensions (m;—1),
according to the minimal indices. The canonical form assumed by @ is due to selecting
appropriate frames of reference within each such E,. If m, is a single greatest index, the
method obtains a unique canonical frame of m, points d,d, ... d,, , where | is that single

point of D derived by the overlap of the nests which initiates a chain of length m;.

When ¢ of the m; are greatest, g of the points 4, are independent and arbitrary within a

fixed [¢—1] which initiates a chain of length m,.

For example, if E — [¢1 Z? ; ¢ ¢] which is a [3] say Dy, then this reflects
. 1 2 .

to Ayyy, Cygs respectively and gives rise to the nests C,g5, C, and A4;y,, 4, and a
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X

~ . Each nest ends in a point, 4, in the case of 4: and this defines d, of D.
By reflexions all the points a,, a,, as, ¢,, ¢,, ¢; are successively obtained from a,. These
define d,, d, uniquely by a,—»d,~»c¢,, a,~d,—c¢;; but d,, depending on the lower
index m, (= 1) is one of oco! possibilities.

tableau

THE VECTORS OF APOLARITY

20. In the Kronecker theory of singular pencils of matrices certain non-zero row
and column vectors # and x arise which annihilate the pencil identically: that is

w(pD,+0Dy) =0, (pDy+0Dy)x — 0, (1)

for all values of p and ¢. To interpret these conditions geometrically we write them as
D X

(w0l pt| =0, [0 D[] =0, @)

which imply that a certain prime U = [pu, ou] belonging to the scroll # contains
the space D, and a certain point X = {px, ox}, also belonging to %, lies in a space
D" = [D,, D,]. This latter must not be confused with the space D" = [ D/, D,] obtained
by transposing the £ x & matrices D, and D,.

When D is in canonical form the above u breaks up into a set of # independent vectors,
one for each minimal index m;. Such a component vector takes the form

© = [0-17’ —po‘p_lnoZ‘T‘b‘za xS (_>17p17] (ﬁ = mi)’ (3)

which annihilates the corresponding part M, of the canonical form of p.D, 4 ¢D,. Simi-
larly for v component vectors of the vector x, with p = n,. These vectors z and x are the
minimal vectors, and their components, » or its dual, have been called the vectors of
apolarity.

Now corresponding to m; is a certain space £; of D external to #. This reflects to 4,
and C,, say, of 4 and C, which together comprise a portion %, of Z: that is, every gener-
ating line g of #, meets at least one of 4, and C,. Each of E, 4,, C,, %, lies in the [2m;+1]
which is otherwise expressed by the portion @, of D already considered.

From (2) it follows that within the space &, there is a prime 7 = [pw, cw] which
contains £, for all values of p, . That is, the vectors of apolarity, belonging to m;,, are
given by the tangent primes of a certain cone for which Z; is the vertical region. Also
(3) shows that each of these primes, which belong to, and therefore touch %, osculates,
to a degree m;, a certain base curve N’ at the point of contact s on Z,.

This curve of Z, is given by the relations

N’'=loc{d&, —pt} = locs, (4)
where £= {,01’,17/0”‘1% (g)pp—Zo-Z’ SA) o-p} (p=my). (5)

This point s = {0, — p£}, where the p+4- 1 components of  are the terms in the expansion
of (p+0)?, lies on the prime 7, as is at once apparent from the vanishing series

ns = [p, 0] {ot, — pE} = 0.
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Also if s'¢ denotes 9%5/dp? we find, by Leibniz’ theorem, that

ms'0 = [pu, 0] 7€, —pEP — g5} = —grug sV,

which vanishes with the series w9~V (¢ =1,2,...,p) by a well-known property of the
binomial coefficients.* Hence 7 contains the p+1 points s, s', ..., s'»’ and has contact
of order p = m; with the curve N’ at s.

Conversely the point s describes the curve N’ which lies in a [p+1]. By what has
just been proved the osculating [ p] of N” at s is the intersection of 7 with this containing
space [ p+1]. The space sE, obtained by joining s to the whole of E, lies in 7 and is the
generator of the cone: that is, the cone is described by letting s describe the curve N'.

Corresponding to the x4 indices m; there are 4 such cones, and by compounding them
together in a more general cone with £ for vertical region, we derive an interpretation
of the vector « in (1) from a tangent prime to a certain co# region 4" of the type con-
sidered in §15.

For the case of a single minimal index #; of column dependence an interpretation,
dual to the above, can be given. The vector [px, ox] is then a point on a certain normal
curve N of order n;+1 which is the intersection of # with the primary space [D,, D,].
The vector x itself can be regarded as the g-generator of # through such a point. For
v indices #; the curve N becomes a rational v-fold region. |

LATENT LOCI

21. Itis readily verified that the matrix

1 .
a b e e
H=pla®> 240 b .. . (b#0),
ab pal"lb bt
transforms a column vector x = {1,0,6? ...,0¢} to a similar set { = {1,¢, 42 ..., §*},

where ¢ = a+ b0 and p§ = Hx. Conversely it is also readily verified that this is the only
matrix which transforms x to £ for all values of 6.

The points x and £ then lie on the same curve N, which is therefore a latent curve of
the transformation. Excluding the trivial case where a = 0, b = 1, two cases arise:

(i) a0,b=1, (i) b1.

In (i) H has one latent root, which is unity, and one elementary divisor whose index
is p+4-1. Gorresponding therefore to each elementary divisor with an index ¢ exceeding
unity of a general matrix there is a certain rational normal curve N of order ¢—1 which
is latent for the transformation and lies in the corresponding subspace [¢—1].

In (ii) the matrix H has p -1 latent roots p, pb, ..., pb? which are in geometrical pro-
gression, so that H can be reduced to purely diagonal form. In effect we can take
a = 0 and ¢ = bf. This gives the following result:

* This expression for point and osculating prime of a normal curve is due to Clifford (1878).
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THEOREM 12. When D meets R at a set of q ordinary points such that the cross ratios of the
q corresponding transversal lines a,b,c,d, are numbers in geometrical progression, then a latent
N curve exists of order q—1. Such a curve also exists when D touches # with (q—1) fold contact
at a point. Otherwise no such latent N curve exists.

One such N exists for each index ¢ exceeding unity, and for each distinct set of latent
roots in geometrical progression when ¢ = 1.

Latent surfaces and higher loci of this type .47, already considered, may be dealt
with in the same way. They would also serve to illustrate geometrically the algebraic
processes involved in passing from a semi-reduced to a completely reduced canonical
form of matrix.

Transcendental latent curves exist in the general case: for example, the curve
loc {A4%}, where 0 is the parameter and 4 is an 7 X # matrix is latent for the collineation
y = Ax, points of parameter ¢ and #+- 1 being corresponding points. Such a curve always
exists when 4 is non-singular, and there is a curve of this type through every pair of
corresponding points, as shown by taking 6 = 0, § = 1. But the curve is algebraic and
not transcendental in special cases, as when integral powers of the latent roots exist
which are all equal.

An interesting discussion of case (i) above is given by Enriques (1918) who also
appends a short historical account of the whole theory.

INVARIANTS OF THE MATRIX PENCIL

22. There is an invariant theory associated with the collineations (zjk/) of §8. I here
state the main results without proof (Turnbull 1942). The 24 collineations belong to
three pairs of matrices § 8 (1) and three characteristic equations each of order £. If « is
a root of one such equation, then 1 —a and «/(a—1) are respectively the roots of the

other two.
If X — X 0F 14 .+ (=) X, =0,

is one of these equations, its coefficients X; are rational integral invariants of the four
medials 4, B, C, D. In fact X, = X(—)#%4,, where 4, denotes the 4k-rowed determinant

4 B C . .
C D 4
and the sum extends to all the determinantal permutations of 4 = 4,4, (i+j = k),

that is to (f) terms. Each of 4, B, C, D has £ columns. Exactly £#—2 of the X; are irre-

ducible, and X, = (BC) (DA), X, = (4B) (CD).
On permuting 4, B, C, D in all possible ways in 4, two further sets ¥; and Z, alone are
found, accounting for the two further characteristic equations. On writing

X, = (4BCD),
then Y, = (ADBC), and Z,— (ACDB)..
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Moreover, the sets X, ¥, Z are connected by the linear relations
X=QY, Y=0QZ Z=QX, @ =],

where T e,

—12:
1 —11°:

a triangular £+ 1 X k41 matrix of binomial coeflicients whose cube is the unit matrix.

The roots of the characteristic equations and their reciprocals are the six sets of
cross ratios on the £ latent lines of the collineations. One root is —1 if one of 2'X, XY,
XZ vanishes. Hence the necessary and sufficient condition for four [k—1]’s in [2k—1] to cut
one of their transversal lines harmonically is

2X,.5Y,.57Z = 0.

If £ = 2, the condition for one transversal of four skew lines in [3] to be cut harmonic-

ally is
(—p+2q+2r) (20 —q+2r) (2p+29—7) = 0,

where p = (BC) (4D), g = (CA) (BD), r = (4B) (CD) in terms of the mutual moments
(BC), etc. of the lines 4, B, C, D.

The condition ,/p+./¢+./r = 0 implies that the cross ratios on the two transversals
are equal, which holds when either the line D touches the quadric # through 4, B
and C or else is a generator of Z.
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